Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1227132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608947

RESUMO

Antibiotic resistance in bacteria has emerged as a serious public health threat worldwide. Aquatic environments including irrigation-purpose wastewaters facilitate the emergence and transmission of antibiotic-resistant bacteria and antibiotic resistance genes leading to detrimental effects on human health and environment sustainability. Considering the paramount threat of ever-increasing antibiotic resistance to human health, there is an urgent need for continuous environmental monitoring of antibiotic-resistant bacteria and antibiotic resistance genes in wastewater being used for irrigation in Indian agro-ecosystems. In this study, the prevalence of antibiotic resistance in Gram-negative bacteria isolated from irrigation-purpose wastewater samples from Sirmaur and Solan districts of Himachal Pradesh was determined. Bacterial isolates of genera Escherichia, Enterobacter, Hafnia, Shigella, Citrobacter, and Klebsiella obtained from 11 different geographical locations were found to exhibit resistance against ampicillin, amoxyclav, cefotaxime, co-trimoxazole, tobramycin, cefpodoxime and ceftazidime. However, all the isolates were sensitive to aminoglycoside antibiotic gentamicin. Enterobacter spp. and Escherichia coli showed predominance among all the isolates. Multidrug-resistance phenotype was observed with isolate AUK-06 (Enterobacter sp.) which exhibited resistant to five antibiotics. Isolate AUK-02 and AUK-09, both E. coli strains showed resistant phenotypes to four antibiotics each. Phenotypic detection revealed that six isolates were positive for extended-spectrum ß-lactamases which includes two isolates from Enterobacter spp. and E. coli each and one each from Shigella sp. and Citrobacter sp. Overall, the findings revealed the occurrence of antibiotic resistant and ESBL-positive bacterial isolates in wastewaters utilized for irrigation purpose in the study area and necessitate continuous monitoring and precautionary interventions. The outcomes of the study would be of significant clinical, epidemiological, and agro-environmental importance in designing effective wastewater management and environmental pollution control strategies.

2.
Front Microbiol ; 14: 1228117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601347

RESUMO

Heavy metal pollution of soil is a major concern due to its non-biodegradable nature, bioaccumulation, and persistence in the environment. To explore the probable function of EDTA in ameliorating heavy metal toxicity and achieve the sustainable development goal (SDG), Brassica juncea L. seedlings were treated with different concentrations of EDTA (0, 1.0, 2.0, 3.0, and 4.0 mM Kg-1) in heavy metal-polluted soil. Plant samples were collected 60 days after sowing; photosynthetic pigments, H2O2, monoaldehyde (MDA), antioxidant enzymes, and ascorbic acid content, as well as plant biomass, were estimated in plants. Soil and plant samples were also examined for the concentrations of Cd, Cr, Pb, and Hg. Moreover, values of the phytoremediation factor were utilized to assess the accumulation capacity of heavy metals by B. juncea under EDTA treatments. In the absence of EDTA, B. juncea seedlings accrued heavy metals in their roots and shoots in a concentration-dependent manner. However, the highest biomass of plants (roots and shoots) was recorded with the application of 2 mM kg-1 EDTA. Moreover, high levels (above 3 mM kg-1) of EDTA concentration have reduced the biomass of plants (roots and shoots), photosynthetic area, and chlorophyll content. The effect of EDTA levels on photosynthetic pigments (chlorophyll a and b) revealed that with an increment in EDTA concentration, accumulation of heavy metals was also increased in the plant, subsequently decreasing the chlorophyll a and b concentration in the plant. TLF was found to be in the order Pb> Hg> Zn> and >Ni, while TF was found to be in the order Hg>Zn>Ni>Pb, and the best dose was 3 mM kg-1 EDTA for Hg and 4 mM kg-1 for Pb, Ni, and Zn. Furthermore, hyperaccumulation of heavy metals enhanced the generation of hydrogen peroxide (H2O2), superoxide anions (O2•-), and lipid peroxidation. It also interrupts mechanisms of the antioxidant defense system. Furthermore, heavy metal stress reduced plant growth, biomass, and chlorophyll (chl) content. These findings suggest that the exogenous addition of EDTA to the heavy metal-treated seedlings increases the bioavailability of heavy metals for phytoextraction and decreases heavy metal-induced oxidative injuries by restricting heavy metal uptake and components of their antioxidant defense systems.

3.
Chemosphere ; 318: 137945, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36702406

RESUMO

The pinnacle of all the efforts of nutrient removal is practically put-down the moment biological cells are lysed, hydrolyzed or digested causing subsequent reappearance of assimilated nitrogen and phosphorus in any biological process. While sludge reduction requires high SRT, the enhanced phosphorus assimilative uptake demands low SRT. A novel reactor configuration for enhanced sludge and phosphorus removal was put to test by incorporating a side stream anaerobic reactor to an Anaerobic-Anoxic-Aerobic (A2O) SBR with a pre-anoxic chamber and an influent receiving inlet anaerobic reactor. The reactor was operated at the average and lowest range of prevailing carbon/phosphorus (C/P) ratio of 50 and 15 in the sewage. The phosphorus enrichment was 0.0469-0.135 mgTP/mgVSS resulting in 1.76-5.05-fold increase from cellular content by virtue of maintaining sludge recycle from SBR aeration tank to side stream anaerobic reactor from 3.78 to 9.78 (average 4.4-8.2) gVSS/gVSS present in the reactor. However, the sludge was also reduced from 3% to 51% on an average basis during the same recirculation regime. This novel configuration consists of an inlet anaerobic reactor, one pre-anoxic chamber and one intermittent oxic anoxic reaction SBR and a side stream anaerobic reactor. The first anaerobic reactor at inlet followed by pre-anoxic chamber was provided for increased ortho-p released and nitrification respectively and a side stream anaerobic reactor for sludge reduction through sludge fasting mechanism. The EBPR and lesser sludge growth were two conflicting parameters reconciled to the extent that if sludge recycled up to 6.41 gVSS/gVSS the sludge growth would be reduced by 25% and phosphorus enrichment could be attained up to 3.46 times the stoichiometric value. Any further recirculation would reduce the sludge further but at the expense of enhanced phosphorus uptake as released phosphorus from side stream anaerobic reactor also recycled back to main SBR causing looping and at more than 6.41gVSSrecycled/gVSS it nullified the enhanced effect.


Assuntos
Reatores Biológicos , Esgotos , Nitrificação , Fósforo , Nitrogênio , Eliminação de Resíduos Líquidos
4.
Chemosphere ; 307(Pt 1): 135746, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35863413

RESUMO

A modified biological-integrated electrocoagulation method was explored to treat municipal wastewater (MWW) for irrigation purposes. To use treated wastewater for irrigation purposes a wide range of contaminants removal was focused on in this study (turbidity, hardness, conductivity, TDS, TSS, chloride, Ammonia nitrogen, BOD, COD, and total coliform). Raw municipal wastewater (RMWW) was treated in a modified Bio-Electrocoagulation (BEC) cell. The cell was operated in a continuous flow mode and consisted of an electrocoagulation stage using aluminum (Al) electrodes followed by a bioremediation stage using a fixed bio-filter (BF), the design of the cell was further modified by the addition of a sand filter (SF). The effect of several parameters such as applied voltage (22, 26, and 30 V), inlet flow rate (1, 3, and 5 Lh-1), and initial pH (pH 3, 5, 7, 7.4, and 9) was investigated to determine the optimum operating conditions for selected responses. The most effective operating conditions for the BEC were investigated for the different irrigation water quality (WQ) indicators. It was observed that pH 7.4 and 26 V provide maximum removal efficiency of contaminants at the flow rate of 1 Lh-1. A fixed film BF plays a positive role to improve the degradation of contaminants after the EC unit up to 4% of NH3-N, 9.3% of BOD, and 7.8% of COD. In addition, using the SF improved the turbidity removal to 42.6%. The WQ specifications of the treated MWW using the BEC cell were compared with the standard specifications for restricted and unrestricted agricultural irrigation water. The overall operating cost of MWW treatment for irrigation purposes by using a modified bio-integrated electrocoagulation method was 0.76 $m-3.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Alumínio , Amônia , Cloretos , Eletrocoagulação/métodos , Eletrodos , Concentração de Íons de Hidrogênio , Resíduos Industriais , Nitrogênio , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...